2-Hole Flange Mount Jack Receptacle | ACCEPTS PIN SIZE | GOLD PLATED | PASSIVATED | |----------------------------|--------------|--------------| | .0120 +/0005 (0.305 +/013) | 145-0701-601 | 145-0701-602 | #### MATERIAL SPECIFICATIONS Bodies: Stainless steel per QQ-B-626, gold plated* per MIL-G-45204 .00005" min. or passivated per MIL-F-14072 B (EL) 300 Contacts: Female - beryllium copper per QQ-C-530, gold plated per MIL-G-45204 .00005" min. Contact Support Beads: PTFE fluorocarbon per ASTM D 1710 and ASTM D 1457 or modified PPE resin Seal Rings: Silicone rubber per ZZ-R-765 ### **MECHANICAL RATINGS** Engagement Design: MIL-STD-348, Series SMK (2.92mm) Engagement/Disengagement Force: 2 inch-pounds maximum Mating Torque: 7 to 10 inch-pounds Coupling Proof Torque: 15 inch-pounds minimum Coupling Nut Retention: 60 pounds minimum Contact Retention: 6 lbs. minimum axial force (captivated contacts) Cable Retention: Axial Force*(lbs) Torque .086 semi-rigid 16 .141 semi-rigid 55 *Or cable breaking strength whichever is less. Durability: 500 cycles minimum #### Notes: 1. ID of contact shall meet VSWR and connectivity requirements when mated with dia. .0355-.0365 male pin. #### Mating Engagement for SMK (2.92mm) Series per MIL-STD-348 ^{*} All gold plated parts include a .00005" min. nickel underplate barrier layer. # SMK - 50 Ohm Connectors (2.92mm) INCHES (MILLIMETERS) · CUSTOMER DRAWINGS AVAILABLE UPON REQUEST #### **ELECTRICAL RATINGS** | VSWR: (f = GHz) Semi-rigid straight cabled connectors and adapters | Impedance: 50 ohms
Frequency Range: 0-40 GHz | | | |--|---|--|--| | Field replaceable (see typical return loss graph) | | | | | Working Voltage: (Vrms maximum) Connectors for Cable T ype | Semi-rigid straight cabled connectors and adapters 1.20 Max | | | | Connectors for Cable T ype | Field replaceable (see typical return loss graph) N/A | | | | .086 semi-rigid and field replaceable | | | | | .086 semi-rigid and field replaceable | Connectors for Cable T ype Sea Level 70K Feet | | | | Dielectric Withstanding Voltage: (VRMS minimum at sea level) .086 semi-rigid and field replaceable | .086 semi-rigid and field replaceable | | | | .086 semi-rigid and field replaceable | .141 semi-rigid and adapters 500 125 | | | | .086 semi-rigid and field replaceable | Dielectric Withstanding Voltage: (VRMS minimum at sea level) | | | | .141 semi-rigid and adapters | .086 semi-rigid and field replaceable 1000 | | | | Corona Level: (Volts minimum at 70,000 feet) .086 semi-rigid and field replaceable | .141 semi-rigid and adapters 1500 | | | | .141 semi-rigid and adapters | Corona Level: (Volts minimum at 70,000 feet) | | | | Insertion Loss: (dB maximum) Adapters | .086 semi-rigid and field replaceable | | | | Insertion Loss: (dB maximum) Adapters | .141 semi-rigid and adapters | | | | Straight semi-rigid cable connectors 0.03 f (GHz), tested at 10 GHz Insulation Resistance: 5000 megohms minimum Contact Resistance: (milliohms maximum) Initial After Environmental Center contact straight cabled connectors 3.0* 4.0 Center contact adapters | Insertion Loss: (dB maximum) | | | | Insulation Resistance: 5000 megohms minimum Contact Resistance: (milliohms maximum) Initial After Environmental Center contact straight cabled connectors 3.0* 4.0 Center contact adapters | Adapters 0.06 f (GHz), tested at 6 GHz | | | | Insulation Resistance: 5000 megohms minimum Contact Resistance: (milliohms maximum) Initial After Environmental Center contact straight cabled connectors 3.0* 4.0 Center contact adapters | Straight semi-rigid cable connectors 0.03 f(G\(\frac{1}{2}\)), tested at 10 GHz | | | | Contact Resistance: (milliohms maximum) Initial After Environmental Center contact straight cabled connectors 3.0* 4.0 Center contact adapters | | | | | Center contact straight cabled connectors 3.0* 4.0 Center contact adapters | | | | | Center contact adapters | | | | | Field replaceable connectors | | | | | Outer contact (all connectors) | | | | | Body to cable (passivated connectors) 5.0 N/A RF Leakage: (dB minimum, tested at 2.5 GHz)90dB RF High Potential Withstanding Voltage: (Vrms minimum, tested at 4 and 7 MHz) = .086 semi-rigid and field replaceable | rieid replaceable connectors | | | | Body to cable (passivated connectors) 5.0 N/A RF Leakage: (dB minimum, tested at 2.5 GHz)90dB RF High Potential Withstanding Voltage: (Vrms minimum, tested at 4 and 7 MHz) = .086 semi-rigid and field replaceable | | | | | RF Leakage: (dB minimum, tested at 2.5 GHz)90dB RF High Potential Withstanding Voltage: (Vrms minimum, tested at 4 and 7 MHz) = .086 semi-rigid and field replaceable | Outer contact (all connectors) 2.0 N/A | | | | RF High Potential Withstanding Voltage: (Vrms minimum, tested at 4 and 7 MHz) = .086 semi-rigid and field replaceable | Outer contact (all connectors) | | | | .086 semi-rigid and field replaceable 670 | Outer contact (all connectors) | | | | .086 semi-rigid and field replaceable | Outer contact (all connectors) | | | | 141 semi-rigid and adapters 1000 | Outer contact (all connectors) | | | | .141 Settii rigid arid adapters | Outer contact (all connectors) | | | #### **ENVIRONMENTAL RATINGS** (Meets or exceed the applicable paragraph of MIL-C-39012) Temperature Range: - 65 °C to + 165 °C Thermal Shock: MIL-STD-202, Method 107, Condition B Corrosion: MIL-STD-202, Method 101, Condition B Shock: MIL-STD-202, Method 213, Condition I Vibration: MIL-STD-202, Method 204, Condition D Moisture Resistance: MIL-STD-202, Method 106 ## FIELD REPLACEABLE TEST ASSEMBLY #### FIELD REPLACEABLE APPLICATION NOTES The field replaceable connectors manufactured by Johnson Components are easy to install and replace. The hermetic seal is mounted into the circuit module wall and the connector can be removed and replaced without destroying the hermeticity of the circuit housing. The field replaceable connector creates a transition from microstrip circuitry to a coaxial transmission line. The SMK (2.92mm) seal pin diameter is .012 (.030) to minimize the capacitive effects on the circuit trace. For optimum electrical performance, the transition from the hermetic seal to the microstrip trace must be properly compensated. Compensation involves adjusting the microstrip trace width to minimize any impedance discontinuities found in the transition area. The plot shown below is representative of the typical return loss of a Johnson Components [™] field replaceable SMK connector. To produce the data shown below, a test fixture is created using the Johnson Components metic seal. The fixture consists of a suitably thick spacer plate with the hermetic seal mounted flush to both surfaces. Two connectors are mounted back to back around the fixture and the VSWR of this test assembly is measured. The calculated return loss trace shown is equivalent to the square root of the measured VSWR of the test assembly. Since the connectors tested are of identical design, it can be stated with fair accuracy that the calculated data shown represents the response of a single field replaceable connector and its transition to the hermetic seal. Although Johnson Components [™] does not publish a VSWR specification for field replaceable connectors, typical connector return loss can be expected to be less than -20 dB through 40 GHz. A VSWR specification is not stated because an industry standard method for testing field replaceable connectors does not exist. The actual performance of the connector is dependent upon the following: - 1. For optimum electrical performance, Johnson Components [™] recommends the use of our standard 142-1000-033 hermetic seal with a pin diameter of .0120 (0.305) +/- .0005 (0.013). - 2. It is recommended that the hermetic seal be mounted flush with the circuit housing. Tolerance variations between the hermetic seal and machined housing do not always guarantee an optimum transition to the connector. Some manufacturers recommend an additional counterbore in the circuit housing to accommodate a solder washer during installation of the seal. Johnson Components does not recommend this type of installation because if the counterbore is not completely filled with solder, electrical discontinuities may be created. - 3. The transition between the hermetic seal pin and the microstrip trace will effect electrical performance, as stated above. Several different methods of hermetic seal mounting and seal pin to microstrip trace attachment are used in the industry. #### TYPICAL RETURN LOSS